Understanding Your Breathing – By Dr David Lewis

Because breathing is usually so automatic and we take it so much for granted it can be difficult to notice minor disruptions to the easy flow of air into and out of our lungs.

Consider, for instance, the way you are breathing right now.
If seated in an easy chair are you slumping comfortably in your seat?
If reading at a desk or table, are you resting your head in your hands and leaning forward over the book?
Are your legs crossed?

If so then you are reducing the efficiency with which oxygen reaches your cells and carbon dioxide is removed, because the movement of your diaphragm is being restricted. The effect of this is likely to shift you towards the left side of the arousal curve.

If you now start to breathe more rapidly and less deeply (hyperventilate) you will also change the rate at which these gasses pass into and out of your blood stream, reducing the amount of carbon dioxide present.

The Mechanisms by Which We Breathe

Although the way in which we breathe is reasonably well known, it will be helpful to examine the machinery involved in some detail since there are many subtle yet crucial aspects of this everyday activity about which many people are unaware.

A clear understanding of the basic principles of respiration and the subtle interactions between body and brain that results makes it easier to follow the practical training that follows. It will also assist in understanding what can so easily go wrong and why these problems occur.

The purpose of breathing is, to course, to extract oxygen from the air while removing carbon dioxide and water vapour from the body and expelling them into our surroundings.

Unlike other muscles in the body, such as the ones in our arms and legs, those involved in breathing have to contract repetitively throughout our life. Fortunately the system is extremely energy efficient, involving only between two and three percent of the body’s total expenditure while at rest. Although the rate at which we breathe increases by 15 to 20 times during strenuous exercise, the amount of energy consumed still remains below four percent.

If made to work too hard, however, these muscles can quickly become fatigued, causing us to gasp for air and leading to a rapid increase in mental and physical arousal. While we all use our mouth when gasping for air after a strenuous run or if our nose is blocked by a cold, some people continue doing so even at rest and when their nostrils are free from congestion. This is a bad habit that must be broken if we are to breathe fully and efficiently.

We breathe between 16,000 and 20,000 times a day.

When our breathing is full and efficient our whole system is physically, emotionally, physically and intellectually enhanced. Which is why we describe somebody filled with creative life energy as being “inspired” or having an “inspiration.”

When our breathing is inefficient (See Six Different Ways You Can Breathe) anxiety and stress increase.

We breathe in one of two main ways. The first is by raising the chest wall using intercostal muscles, attached between each rib. The second is by flattening and contracting the diaphragm – a dome-shaped muscle separating chest cavity and abdomen – whilst moving the upper ribs and breastbone forward and upwards to increase chest capacity. In both instances a partial vacuum is created in the chest cavity drawing air into the lungs.

If your rib cage moves mainly outward and upward, your breathing is shallow and costal. If your diaphragm and muscles forming the abdominal wall do most of the work, your breathing is deep and diaphragmatic. Diaphragmatic or abdominal breathing is most efficient since expansion and ventilation occur in the lower parts of the lung, those portions richest in blood. We breathe in this way when calm and composed. Which means that diaphragmatic breathing helps generate a calm, composed, emotional state. (See Are You an Upside Down Breather?)

Exploring Your Breathing Machinery

Place the fingers of both hands along the lower edge of your ribs, starting at the centre of your chest where they connect with your breastbone or sternum. Applying gentle pressure with your fingertips distinguish the firmness of the rib cage from the softness of the abdomen. Now trace the ribs towards your spine. At your back, the ribs are more difficult to detect due to strong bands of muscles, so apply firmer pressure. A sheet of non- contractile tissue that is attached to the lower ribs and upper lumber vertebrae anchors the diaphragm.

Three essential structures – the oesophagus, which takes food from the mouth to the stomach plus two major blood vessels, the vena cava and the aorta – pass through the diaphragm. As a result it plays an important part in both digestion, by preventing acidic stomach juices passing back into the oesophagus causing heartburn, and circulation by returning deoxygenated blood from the legs, abdomen and pelvis to the heart, via the vena cava and taking oxygenated blood to those organs via the aorta.

The flattening and contracting action of the diaphragm increases abdominal pressure and this, together with the abdominal muscles, creates an inflatable jacket for supporting the low back. As this occurs diaphragm contracts and flattens the volume of the thorax increases, drawing air into the lungs. Chest size is also increased through the action of the scalene muscles, which lift the upper ribs and sternum forward and upwards. The intercostals muscles, attached between each rib, control the outward movement of the lower ribs.

Costal (‘of the ribs’) or chest breathing is characterised by an outward and
upward movement of the rib cage. Because expansion is focused on the midpoint, the centre portions of the lungs enjoy the greatest aeration. Unfortunately it is the lower parts of the lungs that are the richest in blood vessels.

As a result a mismatch occurs. Chest breathing is less efficient during resting periods and requires more work to achieve the same amount of blood gas mixing.

The harder your body is obliged to work the more oxygen it requires and the greater the number of breaths which have to be taken. Costal breathing is useful during vigorous exercise but inappropriate for everyday activities. Because it forms part of the fight or flight response, costal breathing occurs when the individual is aroused by an external or internal threat. As a result it is associated with other stress symptoms such as tension and anxiety. This means that chest breathing performed during a rest period can lead to feelings of tension and anxiety. Paradoxical breathing occurs when both the diaphragm and abdominal muscles are contracted at the same time, as if the person were preparing to receive a blow. While this could protect against a genuine attack by turning the muscle into a rigid wall under most circumstances you are likely to encounter its effect is to make each inhalation weaker and less efficient.

How Air Reaches Your Lungs

From the nose air passed down the windpipe or trachea, a tube some 15 mm wide and between 10 and 12 cm long. This divides into two bronchi and these into two bronchioles, which in turn, branch into smaller structures terminating in air sacks (alveoli) within the lungs.

At birth we possess around 24 million alveoli but by the time we are eight these had increased to the adult number of 300 million. If it were possible to flatten these out and place them side-by-side, they would cover an area approximately the dimensions of a tennis court.

The cone shaped lungs are made up of relatively light and porous tissues that lie more or less freely in the thoracic cavity (chest), their apex immediately beneath the shoulders, their bases resting on the diaphragm and their surfaces making contact with the ribs and spine. A double layer of membrane known as pleura surrounds each lung. Between the two layers is a fluid that bathes the surfaces and prevents friction between the lungs and the chest wall during breathing.

The right lung has three lobes but the left lung only two allowing a space for the heart that fits snugly between the two, lying mainly in a hollow in the inner left lung. To understand exactly why this is read my FREE download Why Your Nose is Really Necessary.

Each lobe is composed of smaller divisions called lobules. A small bronchial tube enters each lobule and divides and subdivides, its walls becoming thinner, and thinner before finally ending in the alveoli. Resembling tiny bubbles, these alveoli have walls just one cell thick that enable oxygen to pass through them and into the blood while carbon dioxide moves out of the blood and into the air.

Diagram illustrating some of the key organs making up our breathing mechanism (1) Trachea (windpipe) (2) Lungs (3) Bronchial Trees (4) Alveoli (air sacs)

For this to happen efficiently there has to be a balance between the amount of blood flowing within the tiny vessels (capillaries) that surround the alveoli and the amount of oxygen within them.

If the blood flow is insufficient the exchange of gasses cannot take place successfully, even when there is plenty of oxygen available. It is a mismatch between the amount of air present in the alveoli and the amount of blood in the capillaries that causes most of the problems associated with lung diseases. Because blood is influenced by gravity, our upright stance means that far more flows through the lower than the upper regions of the lungs, with the least amount being present at the top (apex).

The differences are substantial. While around a litre of blood flows through the lower lobes of the lungs, in the upper regions closer to the collar bone this declines to around one tenth of a litre. Although the greater air flow in the upper part the lungs partly reduces this mismatch, it is still important to breathe as deeply as possible to ensure air is drawn into the lower parts of the lung where the most blood is available to transport it.

While the nose, wind pipe, and other tubing allows air to pass into and out of the body, the bellows that cause the air to move in the first instance is provided by muscles in the upper body, especially those between the ribs (intercostals) and by the diaphragm.

Let’s take a look at how these bones and muscles are arranged to provide the usually tireless and efficient mechanism on which our life depends. Our roughly cylindrical torso (illustrated below) comprises three separate regions:
1] The thorax in which our lungs and heart are located.
2] The abdomen lying directly beneath it and separated from it by the diaphragm, containing digestive organs.
3] The pelvis, which extends from the hipbones to the bottom of the torso and contains organs responsible for getting rid of waste and reproduction.

The thirty-three vertebrae that make up the spine provide both the supporting structure and the framework around which the other tissues and organs are grouped. These vertebral bones are separated from one another by spongy shock absorbers known as vertebral discs.

X-Ray depicting collarbones, ribs and lungs

A skeleton superimposed over a living human torso indicates the relative positions of the rib cage, collarbones and spine. At the front some, but not all, of the ribs are attached to the sternum or breast bone that terminates in the xiphoid process. (Still taken from the Bo-Tau Home Training DVD)

Pairs of ribs are attached to the twelve vertebrae that support the thorax. Lying parallel to one another on each side of the chest, they curve forward and downward, with the first ten joined at the mid-line to the breastbone (sternum) to form a strong yet flexible cage. Because they increase in length and curvature from the top of the chest to the bottom the lower part of this ribcage is also the widest.

Attached to the lower ribs, the breastbone and spine is the diaphragm, separating chest and abdominal cavities. As we breathe in and out, the rise and fall of our chest and movement of the abdomen is produced by two sets of muscles known as the primary and accessory muscles of inhalation. (See below)

Primary muscles are used only during quiet breathing at rest, while the accessory muscles come into action whenever we need to breathe more rapidly, for such as during vigorous exercise. Accessory muscles may, however, be brought into use inappropriately as the result either of a physical problem, such a chronic obstructive lung disease, or a psychological one, such as a panic attack – that results in rapid, shallow, breathing (hyperventilation).

During relaxed breathing the primary muscles contract in a coordinated fashion causing the diaphragm to move down and outwards as the ribs move upward and out. This lowers the pressure inside the thorax causing air to flow into the lungs. These muscles then relax allowing the breath to be expelled due to the elastic recoil of the lungs. In theory there is nothing to prevent one inhaling so deeply and inflating the lungs to such an extent that the delicate alveoli burst under the pressure.

In practice, however, this can never happen. Once the lungs have expanded to a critical point a reflex response inhibits inspiration and causes us to breathe out again. Conversely, deflating the lungs triggers another reflex that obliges us to take a breath.

The Primary Breathing Muscles

Three primary muscles are involved when we take a relaxed breath; the most important of which is the diaphragm, the others being the parasternal and scalenes.

Because the diaphragm is essential for deep, life enhancing, breath work I shall describe its structure and function in more detail. This large yet thin, double dome-shaped, muscle fits inside our chest like a parachute, separating the lungs and the heart within the chest from the organs of digestion such as the stomach, liver and intestines, within the abdomen.

At the top of the dome of the diaphragm is a central tendon, flattened somewhat to accommodate the heart that rests directly above it and is angled towards the left of the body. Radiating from the tendon are fibres that attach the diaphragm to the inner surfaces of the body. Frontally these fibres connect with the inner surface of a small structure at the end of your sternum known as the xiphoid process.

At the sides they are attached to the seventh through to the twelfth ribs and at the spine to the first through to the fourth lumbar vertebrae.

When we breathe deeply and correctly, the diaphragm contracts forcing the guts downward and forward while simultaneously pulling the ribs upwards and outwards in what is sometimes described as a bucket-handle motion. At the same time the parasternal muscles, which are attached to the breastbone and run between each rib, also contract increasing the size of the chest cavity. The scalene muscles, lying on each side the neck, perform a similar action by raising the first and second rib while also helping to stabilise the chest wall.

This creates a larger cavity inside the chest as a result of which the pressure inside the body falls below that of the surrounding atmosphere causing air to flow into the lungs and restore the balance.

When the diaphragm relaxes and billows upward inside the chest the air inside our lungs is compressed and flows out again during an exhalation.

At the same time, as pressure within the chest falls, both the diaphragm and the parasternal muscles relax while the rib cage returns to its previous shape.

During quiet breathing this is a passive process requiring no muscular effort, made possible by the fact that our lungs and chest walls are elastic and, like a rubber band, tend to return to their starting position once the tension created during the inhalation is released. The process is, however, assisted by four abdominal muscles – the rectus abdominis, the external and internal obliques, and the transverses abdominis. All these muscles have attachments to the lower ribs so that contracting them decreases the size of the rib cage so assisting in exhalation. The first group of muscles form the so-called “six pack” that men who work out regularly like to flaunt on the beach.

The ‘manly’ six-pack – good for self-image but less good for breathing

Unfortunately, when these frontal muscles are stronger than the others an imbalance is created that undermine what is termed “core stability” and this inhibits healthy breathing. During deep, health enhancing, breathing the diaphragm performs between 70% and 80% of all the work necessary, leaving the remainder to be done by the secondary respiratory muscles.

When we breathe in this way a stable triangle is formed, with its base extending across the centre of the body. This type of breathing creates a subjective feeling of being grounded and more in touch with our “gut feelings.”

Deep diaphragmatic breathing (DDB) which you will learn in the Bo-Tau Home Training Programme will also help protect and nourish your spine.

Since, as we have seen, the diaphragm attaches along the front of the lumber vertebrae when it is able to move freely and easily this powerful muscle not only helps to stabilise the spine but also helps prevent bone degeneration and arthritic condition by providing traction to the vertebral column. It also safeguards you against the agony of a trapped nerve while keeping the spongy the intervertebral discs plump and healthy. Because, after the age of about twenty, these discs lack their own direct blood supply their only way of remaining moist is by absorbing fluid from the surrounding tissues, something that only occurs during movement.

In addition regular, rhythmic movement of the diaphragm gives all the organs of digestion, reproduction and excretion an excellent workout. As Donna Farhi explains in The Breathing Book: “When the diaphragm moves in the luxurious expansions that mark full breathing, all these organs are massaged, rolled, churned and bathed in new blood, fluids and oxygen…Breathing stimulates all of the body to work better and this is why it has such a profound effect on our sense of well-being”(p.53). Without this massage the organs of digestion, the stomach, liver, spleen, intestines, colon and bladder, can become sluggish. Toxins are removed less efficiently there is a reduction in the amounts of oxygen received by these organs.

Sadly for good health and maximum vitality this is not the way the majority of us tend to breathe.

Posture and Breathing

Because breathing is usually so automatic and we take it so much for granted it can be difficult to notice minor disruptions to the easy flow of air into and out of our lungs. Consider, for instance, the way you are breathing right now.

If seated in an easy chair are you slumping comfortably in your seat?

If reading at a desk or table, are you resting your head in your hands and leaning forward over the book?

Are your legs crossed?

If so then you are reducing the efficiency with which oxygen reaches your cells and carbon dioxide is removed, because the movement of your diaphragm is being restricted. The effect of this is likely to shift you towards the left side of the arousal curve.

If you now start to breathe more rapidly and less deeply (hyperventilate) you will also change the rate at which these gasses pass into and out of your blood stream, reducing the amount of carbon dioxide present.

For rhythmical, abdominal, breathing your weight should be evenly distributed and taken through the spine and pelvis while you are seated, and spine and legs while standing. Frequently this balance is absent and breathing badly affected as a result. For instance if your weight is taken on shoulders and elbows, as often happens when somebody leans forward over a desk, weight is thrown on your shoulder muscles causing them to tense up and become involved in breathing. By forcing abdominal organs upwards, this hunched sitting position also restricts the diaphragm and limits outward movement of the lower ribs.

Where poor posture has become a habit, efficient lung and rib-cage expansion are chronically restricted, so reducing your ability to deal with stressful situations. Emotions, especially those that are bottled up, also exert a profound effect on the way you breathe, especially if great self-control is required to keep them suppressed. By causing the diaphragm and abdominal muscles to tense, drawing the sternum and rib cage downwards, they make taking a breath harder and less efficient since you now have to work your shoulder and neck muscles harder to overcome the downward force. This produces fast, shallow, breathing and a condition termed hyperventilation. Smokers are particularly at risk because they pull air into their lungs with a sucking motion using face, throat and upper limb muscles rather than the diaphragm.

How Changes in Breathing Affect You

The range and variety of distressing effects caused by changes in breathing are seldom fully appreciated.

They include, racing heart; chest pains; dizziness and faintness (especially in young people); anxiety; panic; an inability to concentrate; diminished mental and physical performance; disturbed sleep; nightmares, increased sweating beneath the arms and on palms (emotional sweating); a feeling of unreality; visual disturbance and even hallucinations.

In people who are vulnerable to hyperventilation it is possible to provoke a full- blown panic attack merely by asking them to breathe rapidly and shallowly for a couple of minutes.

All these damaging effects are due to faulty breathing creating an imbalance in the ratio of carbon dioxide and oxygen in our blood. As is well known, when inhaling we take oxygen in from the outside air and expel carbon dioxide, the waste product of metabolism, with each exhaled breath.

These gases travel around the body in our blood stream in a very tightly controlled balance.

By reducing levels of carbon dioxide in the arterial blood, hyperventilation creates a condition known as hypocarbia. This occurs because, being very small, carbon dioxide molecules are able to pass in and out of nerve cells even faster than water. The slightest degree of hypocarbia causes an immediate migration of carbon dioxide from the neurons.

This, in turn, triggers increases in nerve cell activity and electrical discharge in associated nerve fibres. At the same time, veins constrict, reducing oxygen supplies to the brain and creating sensations of dizziness, faintness and unreality. One widely used first-aid treatment for panic is to breathe into and out of a paper bag. By rebreathing carbon dioxide rich exhaled air the balance is restored and panic declines. Stress related hyperventilation triggers a vicious cycle in which rapid breathing produces distressing physical symptoms and the anxiety these arouse create a further increase in stress. Holding your breath in response to stress leads to a rapid build up of carbon dioxide and produces equally distressing mental and physical consequences. Here’s a simple but powerful breathing technique that will help you to reduce
stress and increase energy levels. Lie down or sit comfortably upright. Close your eyes. Place one hand on your chest and the other on your abdomen. Become aware of the rate and rhythm of your breathing. Inhale and exhale smoothly, slowly and deeply through your nostrils. As you breathe in, picture yourself flattening the dome of your diaphragm by pushing out your lower ribs. You will feel a slight increase of pressure in the abdomen against your low back and the floor of the pelvis. Imagine the air being forced deeper and deeper into your lungs. Keep your face as relaxed as possible when carrying out this exercise. Consciously pull in your abdominal muscles as you exhale, using your hand if necessary to push down the stomach. As you inhale become aware of your abdominal wall pushing outward. If you have any difficulty doing this, place both hands, fingertips touching, on your stomach. When the diaphragm flattens notice how the fingertips separate as your stomach, sides and back expand. Practice daily until this becomes your normal pattern of breathing, whether sitting, standing or lying down. Abdominal breathing infuses your blood with extra oxygen and causes the release of mood enhancing endorphins.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s